
SLE U. - ,00Ioc ili ILW'
00
00 AVF Control Number: NBS87VDEC5401 p

I °I
Ada Compiler

VALIDATION SUMMARY REPORT:

Certificate Number: 871209S1.09014
Digital Equipment Corp.
VAX Ada, Version 1.5

The host environment is the VAX 8800 under VAX/VMS, Version

4.7. The target environments are the VAX 8800 (under
VAX/VMS, Version 4.7) and VAXstation II (under MicroVMS,
Version 4.7)

Completion of On-Site Testing: D T IC09 Dec 1987- E C,,

SEP 0 I B J
Prepared By: D

Software Standards Validation Group
Institute for Computer Sciences and Technology

National Bureau of Standards

Building 225, Room A266
Gaithersburg, Maryland 20899

Prepared For:

Ada Joint Program Office
United States Department of Defense

Washington, D.C. 20301-3081

!

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered) _

REPORT DOCUMENTATION PAGE READINSTRUCTIONS
1.RPR UBRBEFORE

COMPLETE!NG FOP-M

1. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED

Ada Compiler Validation Summary Report: 9 Dec 1987 to 9 Dec 1988

Diqital Equipment Corp.,VAX ada, Version 1.5,
VAX 8800 ?Host), and VAX 8800 & VAXstation 11 6. PERFORMING ORG. REPORT NUMBER
(Targets).

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)

National Bureau of Standards,
Gaithersburg, Maryland, U.S.A.

9. PERFORMING ORGANIZATION AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK• " AREA & WORK UNIT NUMBERS

National Bureau of Standards, AN
Gaithersburg, Maryland, U.S.A.

11. CONTROLLING OFFICE NAME AND ADDRESS I2. REPORT DATE

Ada Joint Program Office 9fDecember1987 S
United States Department of Defense 13. NUMBER OF PAGES
Washington, DC 20301-3081 7 1p

14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) 15. SECURITY CLASS (of this report)

UNCLASSIFIED
National Bureau of Standards, 15a. 5AaFICATION/DOWNGRADING

Gaithersburg, Maryland, U.S.A. N/A

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20. If different from Report)

UNCLASSIFIED

18. SUPPLEMENTARY NOTES

19. KEYWORDS (Continue on reverse side if necessary and identify by block number)

Ada Programming language, Ada Compiler Validation Summary Report, Ada
Compiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-
1815A, Ada Joint Program Office, AJPO

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

VAX Ada, Version 1.5, Digital Equipment Corp., National Bureau of Standards, VAX 8800 (Host) under
VAXIVMS, Version 4.7 and VAX 8800 (Target) under VAX/VMS, Version 4.7, and VAXstation II (Target
under MicroVMS, Version 4.7,ACVC 1.9.

DD "-.' 1473 EDITION OF I NOV 65 IS nlSOtFTr

I JAN 73 S/N 0102-LF-014-6601 UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Enre',d

Ada Compiler Validation Summary Report:

Compiler Name: VAX Ada, Version 1.5

Certificate Number: 871209SI.09014

Host: VAX 8800 under VAX/VMS, Version 4.7

Targets: VAX 8800 under VAX/VMS, Version 4.7
VAXstation II under MicroVMS, Version 4.7

Testing Completed 09 Dec 1987 Using ACVC 1.9

This report has been reviewed and is approved.

Chief, Information Systems
Engineering Division
National Bureau of Standards
Gaithersburg, MD 20899

K(da. Validation OrganizationNr'
Dr. John F. Kramer ,
Institute for Defense Analyses j
Alexandria, VA 22311 .

Ada Jolt Program Office
Virginia L. Castor
Director
Department of Defense
Washington DC 20301

EXECUTIVE SUMMARY

This Validation Summary Report (VSR) summarizes the results and
conclusions of validation testing performed on the VAX Ada, Version 1.5, 0
using Version 1.9 of the Ada Compiler Validation Capability (ACVC). VAX
Ada is hosted on a VAX 8800 operating under VAX/VMS, Version 4.7.
Programs processed by this compiler may be executed on:

VAX 8800 under VAX/VMS, Version 4.7

VAXstation II under MicroVMS, Version 4.7

On-site testing was performed 07 Dec 1987 through 09 Dec 1987 at Nashua,
NH, under the direction of the Software Standards Validation Group,
Institute for Computer Sciences and Technology, National Bureau of

Standards (AVF), according to Ada Validation Organization (AVO) policies
,Ad procedures. At the time ot testing, version 1.9 of the ACVC

comprised 3122 tests of which 25 had been withdrawn. Of the remaining
tests, 89 were determined to be inapplicable to this implementation.
Results for processed Class A, C, D, and E tests were examined for
correct execution. Compilation listings for Class B tests were analyzed

for correct diagnosis of syntax and semantic errors. Compilation and
link results of Class L tests were analyzed for correct detection of S
errors. The remaining 3008 tests were passed. The results of
validation are summarized in the following table:

RESULT CHAPTER TOTAL
__2 3 4 5 6 7 9 9 0 11121314

Passed 185 553 657 245 166 98 141 326 137 36 234 3 227 3008

Failed 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Inapplicable 19 20 18 3 0 0 2 1 0 0 0 0 26 89

Withdrawn 2 13 2 0 0 1 2 0 0 0 2 1 2 25

TOTAL 206 586 677 248 166 99 145 327 137 36 236 4 255 3122

The AVF concludes that these results demonstrate acceptable conformity 0

to ANSI/MIL-STD-1815A Ada.

i

S

.S

TABLE OF CONTENTS 0

CHAPTER I INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT 1-2

1.2 USE OF THIS VALIDATION SUMMARY REPORT 1-2

1.3 REFERENCES 1.................... -3

1.4 DEFINITION OF TERMS1-3

1.5 ACVC TEST CLASSES 1-4

CHAPTER 2 CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED 2-1

2.2 IMPLEMENTATION CHARACTERISTICS 2-1

CHAPTER 3 TEST INFORMATION

3.1 TEST RESULTS 3-1

3.2 SUMMARY OF TEST RESULTS BY CLASS 3-1

3.3 SUMMARY OF TEST RESULTS BY CHAPTER 3-2
3.4 WITHDRAWN TESTS3-2

3.5 INAPPLICABLE TESTS3-2
3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS . . 3-4

3.7 ADDITIONAL TESTING INFORMATION 3-4
3.7.1 Prevalidation3-4

3.7.2 Test Method3-5
3.7.3 Test Site3-6

APPENDIX A CONFORMANCE STATEMENT

APPENDIX B APPENDIX F OF THE Ada STANDARD

APPENDIX C TEST PARAMETERS

APPENDIX D WITHDRAWN TESTS 0

•S

Nw

CHAPTER 1

INTRODUCTION

This Validation-Su mary Report (-VSWY describes the extent to which a
specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815A.
This report explains all technical terms used within it and thoroughly

reports the results of testing this compiler using the Ada Compiler
Validation Capability (ACVC). An Ada compiler must be implemented 0
according to the Ada Standard, and any implementation-dependent features
must conform to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entirety, and nothing can be implemented that
is not in the Standard.

"Even though all validated Ada compilers conform to the Ada Standard, it 0
must be understood that some differences do exist between
implementations. The Ada Standard permits some implementation
dependencies- -for example, the maximum length of identifiers or the
maximum values of integer types. Other differences between compilers
result from the characteristics of particular operating systems,
hardware, or implementation strategies. All the dependencies observed
during the process of testing this compiler are given in this report.,

This information in this report is derived from the test results
produced during validation testing. The validation process includes
submitting a suite of standardized tests, the ACVC, as inputs to an Ada
compiler and evaluating the results. The purpose of validating is to S

ensure conformity of the compiler to the Ada Standard by testing that
the compiler properly implements legal language constructs and that it
identifies and rejects illegal language constructs. The testing also
identifies behavior that is implementation dependent but permitted by
the Ada Standard. Six classes of test are used. These tests are
designed to perform checks at compile time, at link time, and during 0
execution. i

N.~

IN A

1.3 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documentes the results of the validation testing performed on an

Ada compiler. Testing was carried out for the following purposes:

To attempt to identify any language constructs supported by

the compiler that do not conform to the Ada Standard

To attempt to identify any unsupported language constrcts

required by the Ada Standard

To determine that the implementation-dependent behavior is
allowed by the Ada Standard

On-site testing was conducted from 07 Dec 1987 through 09 Dec 1987 at
Nashua, NH.

0

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originnting country, the AVO

may make full and free public disclosure of this report. In the United

States, this is provided in accordance with the "Freedom of Information

Act" (5 U.S.C. #552). The results of this validation apply only to

the computers, operating systems, and compiler versions identified in

this report.

The organizations represented on the signature page of this report do

not represent or warrant that all statements set forth in this report

are accurate and complete, or that the subject compiler has no 0

nonconformities to the Ada Standard other than those presented. Copies

of this report are available to the public from:

Ada Information Clearinghouse

Ada Joint Program Office
OUSDRE 0

The Pentagon, Rm 3D-139 (Fern Street)

Washington DC 20301-3081

or from:

Software Standards Validation Group

Institute for Computer Sciences and Technology

National Bureau of Standards
Building 225, Room A266

Gaithersburg, Maryland 20899

1-2

Questions regarding this report or the validation test results should be
directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1.3 REFERENCES

1. Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983.

2. Ada Compiler Validation Procedures and Guidelines. Ada Joint
Program Office, 1 January 1987.

3. Ada Compiler Validation Capability Implementers' Guide.
SofTech, Inc., December 1986.

1.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. The set of Ada p
programs that tests the conformity of an Ada compiler to
the Ada programming language. 'N

Ada Commentary An Ada Commentary contains all information relevant to
the point addressed by a comment on the Ada Standard.
These comments are given a unique identification number
having the form AI-ddddd.

Ada Standard ANSI/MIL-STD-1815A, February 1983.

Applicant The agency requesting validation. ,I

AVF The Ada Validation Facility. In the context of this
report, the AVF is responsible for conducting compilerA
validations according to established procedures.

AVO The Ada Validation Organization. In the context of
this, report, the AVO is responsible for establishing
procedures for compiler validations.

Compiler A processor for the Ada language. In the context of
this report, a compiler is any language processor,

1-3

including cross-compilers, translators, and
interpreters.

Failed test An ACVC test for which the compiler generates a result
that demonstrates nonconformity to the Ada Standard.

Host The computer on which the compiler resides.

Inapplicable An ACVC test that uses features of the language that a
test compiler is not required to support or may legitimately

support in a way other than the one expected by the
test.

Language The Language Maintenance Panel (LMP) is a committee
Maintenance established by the Ada Board to recommend

interpretations and Panel possible changes to the
ANSI/MIL-STD for Ada.

Passed test An ACVC test for which a compiler generates the expected
result.

Target The computer for which a compiler generates code.

Test An Ada program that checks a compiler's conformity
regarding a particular feature or a combination of
features to the Ada Standard. In the context of this
report, the term is used to designate a single test,
which may comprise one or more files.

Withdrawn An ACVC test found to be incorrect and not used to check
test conformity to the Ada Standard. A test may be incorrect

because it has an invalid test objective, fails to meet
its test objective, or contains illegal or erroneous use
nf the langilaze.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC
contains both legal and illegal Ada programs structuied i:ci l. test
classes: A, B, C, D, E, and L. The first letter of a test name
identifies the class to which it belongs. Class A, C, D, and E tests
are executable, and special program units are used to report their
results during execution. Class B tests are expected to produce
compilation errors. Class L tests are expected to produce link errors.

Class A tests check that legal Ada programs can be successfully compiled
and executed. However, no checks are performed during execution to see
if the test objective had been met. For example, a Class A test checks
that reserved words of another language (other than those already
reserved in the Ada language) are not treated as reserved words by an

1-4

T 1.

* ~ '~'~'> -- -. ~ '~ 5%

Ada compiler. A Class A test is passed If no errors are detected at
compile time and the program executes to produce a PASSED message.

Class B tests check that a compiler detects illegal language usage.
Class B tests ar& not executable. Each test in this class is compiled
and the resulting compilation listing is examined to verify that every
syntax or semantic error in the test is detected. A Class B test is
passed if every illegal construct that it contains is detected by the
compiler.

Class C tests check that legal Ada programs can be correctly compiled
and executed. Each Class C test is self-checking and produces a PASSED,
FAILED, or NOT APPLICABLE message indicating the result when it is
executed.

Class D tests check the compilation and execution capacities of a
compiler. Since there are no capacity requirements placed on a compiler
by the Ada Standard for some parameters--for example, the number of
identifiers permitted in a compilation or the number of units in a
library--a compiler may refuse to compile a Class D test and still be a
conforming compiler. Therefore, if a Class D test fails to compile
because the capacity of the compiler is exceeded, the test is classified 0
as inapplicable. If a Class D test compiles successfully, it is
self-checking and produces a PASSED or FAILED message during execution.

Each Class E test is self-checking and produces a NOT APPLICABLE,
PASSED, or FAILED message when it is compiled and executed. However,
the Ada Standard permits an implementation to reject programs containing
some features addressed by Class E tests during compilation. Therefore,
a Class E test is passed by a compiler if it is compiled successfully
and executes to produce a PASSED message, or if it is rejected by the

compiler for an allowable reason.

Class L tests check that incomplete or illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute. Class L tests are compiled separately and execution is
attempted. A Class L test passes if it is rejected at link time--that

is, an attempt to execute the main program must generate an error
message before any declarations in the main program or any units
referenced by the main program are elaborated.

Two library units, the package REPORT and the procedrc CHECK FTLE.
support the self-checking features of the executable tests. The package
REPORT provides the mechanism by which executable tests report PASSED,
FAILED, or NOT APPLICABLE results. It also provides a set of identity
functions used to defeat some compiler optimizations allowed by the Ada
Standard that would circumvent a test objective. The procedure CHECK
FILE is used to check the contents of text files written by some of the

Class C tests for chapter 14 of the Ada Standard. The operation of
these units is checked by a set of executable tests. These tests
produce messages that are examined to verify that the units are

1

1-5

operating correctly. If these units are not operating correctly, then
the validation is -t attempted.

The text of th, tests in the ACVC follow conventions that are intended
to ensure ti.dt the tests are reasonably portable without modification.

For example, the tests make use of only the basic set of 55 characters,
contain lines with a maximum length of 72 characters, use small numeric
values, and place features that may not be supported by all -p

implementations in separate tests. However, some tests contain values
that require the test to be customized according to
implementation-specific values--for example, an illegal file name. A
list of the values used for this validation is provided in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformity to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test is inapplicable
to the implementation. The applicability of a test to an implementation
is considered each time the implementation is validated. A test that is
inapplicable for one validation is not necessarily inapplicable for a
subsequent validation. Any test that was determined to contain an
illegal language construct or an erroneous language construct is
withdrawn from the ACVC and, therefore, is not used in testing a
compiler. The tests withdrawn at the time of validation are given in
Appendix D.

1-6

QA QM.%M

II

S

CHAPTER 2

CONFIGURATION INFORMATION

I

2.1 CONFIGURATION TESTED

The candidate compilation system for this validation was tested under

the following configuration:

S

Compiler: VAX Ada, Version 1.5

ACVC Version: 1.9

Certificate Number: 871209S1.09014 S

Host Computer:

Machine: VAX 8800

Operating System: VAX/VMS, Version 4.7
S

Memory Size: 68Mbytes

Target Computers:

Machine: Operating System: Memory Size:

VAX 8800 VAX/VMS, Version 4.7 68Mbytes

VAXstation II MicroVMS, Version 4.7 9Mbytes

Communications Network: DECnet

2.2 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior

of a compiler in those areas of the Ada Standard that permit

implementations to differ. Class D and E tests specifically check for

such implementation differences. However, tests in other classes also

characterize an implementation. The tests demonstrate the following

characteristics: S

2-1

Capacities.

The corpiler correctly processes tests containing loop
statements nested to 65 levels, block statements nested to 65
levels, and recursive procedures separately compiled as subunits
nested to 17 levels. It correctly processes a compilation
containing 723 variables in the same declarative rart. (See
test D55AO3A..H (8 tests), D56001B, D64005E..G (3 tests), and
D29002K.)

Universal integer calculations.

An implementation is allowed to reject universal integer
calculations having values that exceed SYSTEM.MAX INT. This
implementation processes 64 bit integer calculations. (See
tests D4AO02A, D4AOO2B, D4AO04A, and D4AO04B.)

Predefined types.

This implementation supports the additional predefined types
SHORTINTEGER, LONG FLOAT, and SHORT SHORT INTEGER in the
package STANDARD. (See tests B86001B0 and B86001D.)

- Based literals.

An implementation is allowed to reject a based literal with a
value exceeding SYSTEM.MAX INT during compilation, or it may
raise NUMERIC ERROR or CONSTRAINT ERROR Quring execution. This
implementation raises NUMERICERROR during execution. (See test
E24101A.)

- Expression evaluation.

Apparently all default. initialization expressions or record
components are evaluated before any value is checked to belong
to a component's subtype. (See test C32117A.)

Assignments for subtypes are performed with the same precision
as the base type. (See test C35712B.)

This implementation uses no extra bits for extra precision.
This implementation uses all extra bits for extra range. (See ",
test C35903A.)

Apparently NUMERICERROR is raised when an integer literal

2-2

operand in a comparison or membership test is outside the range
of the base type. (See test C45232A.)

Apparently NUMERICERROR is raised when a literal operand in a 0
fixed point comparison or membership test is outside the range
of the base type. (See test C45252A.)

Apparently underflow is not gradual. (See tests C45524A..Z.)

-Rounding. 0

The method used for rounding to integer is apparently round away
from zero. (See tests C46012A..Z.)

The method used for rounding to longest integer is apparently
round away from zero. (See tests C46012A..Z.) 0

The method used for rounding to integer in static universal real
expressions is apparently round away from zero. (See test
C4AOI4A.)

- Array types.

An implementation is allowed to raise NUMERICERROR or
CONSTRAINT ERROR for an array having a 'LENGTH that exceeds
STANDARD.INTEGER'LAST and/or SYSTEM.MAXINT. For this
implementation:

Declaration of an array type or subtype declaration with more
than SYSTEM.MAXINT components raises NUMERICERROR. (See test
C36003A.)

NUMERICERROR is raised when 'LENGTH is applied to an array type
with INTEGER'LAST + 2 components. NUMERICERROR is raised when
an array type with INTEGER'LAST + 2 components is declared.
(See test C36202A.)

NUMERIC ERROR is raised when 'LENGTH is applied to an array type
with SYSTEM.MAXINT + 2 components. NUMERIC ERROR is raised
when an array type with SYSTEM.MAX INT + 2 components is
declared. (See test C36202B.,)

A packed BOOLEAN array having a 'LENGTH exceeding INTEGER'LAST
raises NUMERICERROR when the array type is declared. (See test '

C52103X.)

A packed two-dimensional BOOLEAN array with more than 1
INTEGER'LAST components raises NUMERICERROR when the array type
is declared. (See test C52104Y.)

A null array with one dimension of length greater than

INTECER'LAST may raise NUMERICERROR or CONSTRAINTERROR either S

2-3

N

when declared or assigned. Alternatively, an implementation may
accept the declaration. However, lengths must match in array
slice assignments. This implementation raises NUMERICERROR
when the array type is declared. (See test E52103Y.)

In assigning one-dimensional array types, the expression appears
to be evaluated in its entirety before CONSTRAINTERROR is
raised when checking whether the expression's subtype is
compatible with the target's subtype. In assigning
two-dimensional array types, the expression does not appear to
be evaluated in its entirety before CONSTRAINT ERROR is raised
when checking whether the expression's subtype is compatible
with the target's subtype. (See test C52013A.)

- Discriminated types. •

During compilation, an implementation is allowed to either
accept or reject an incomplete type with discriminants that is
used in an access type definition with a compatible discriminant
constraint. This implementation accepts such subtype
indications. (See test E38104A.)

In assigning record types with disciminants, the expression
appears to be evaluated in its entirety before CONSTRAINT ERROR
is raised when checking whether the expression's subtype is
compatible with the target's subtype. (See test C52013A.)

- Aggregates.

In the evaluation of a multi-dimensional aggregate, all choices
appear to be evaluated before checking against the index type.
(See tests C43207A and C43207B.)

In the evaluation of an aggregate containing subaggregates, all
choices are evaluated before being checked for identical bounds.

(See test E43212B.)

All choices are evaluated before CONSTRAINTERROR is raised if a
bound in a nonnull range of 4 nonnull aggregate does not belong
to an index subtype. (See test E43211B.)

- Representation clauses.

The Ada Standard does not require an implementation to support
representation clauses. If a representation clause is not
supported, then the implementation must reject it.

Enumeration representation clauses containing noncontiguous
values for enumeration types other than character and boolean S

2-4

types are supported. (See tests C355021. .J, C35502M. .N, and
A39005F.)

Enumeration representation clauses containing noncontiguous 3

values for character types are supported. (See tests
C355071..J, C35507M..N, and C55B16A.)

Enumeration representation clauses for boolean types containing
representational values other than (FALSE -> 0, TRUE -> 1) are
not supported. (See tests C355081..J and C35508M..N.)

Length clauses with SIZE specifications for enumeration types
are supported. (See test A39005B.)

Length clauses with STORAGE SIZE specifications for access types
are supported. (See tests A39005C and C87B62B.)

Length clauses with STORAGE SIZE specifications for task types
are supported. (See tests A39005D and C87B62D.)

Length clauses with SMALL specifications are supported. (See
tests A39005E and C87B62C.)

Length clauses with SIZE specifications for derived integer
types are supported. (See test C87B62A.)

- Pragmas.

The pragma INLINE is supported for procedures. The pragma
INLINE is supported for functions. (See tests LA3004A,
IA3004B, EA3004C, EA3004D, CA3004E, and CA3004F.)

Input/output.

The package SEQUENTIAL 10 can be instantiated with unconstrained
array types and record types with discriminants without
defaults. (See tests AE2101C, EE2201D, and EE220IE.)

By default, the package DIRECT 10 cannot be instantiated with
unconstrained array types and record types with discriminants
without defaults. (See tests EE2401D and EE2401G.)

There are strings which are illegal external file names for
SEQUENTIALIO and DIRECTIO. (See tests CE2102C and CE2102H.)

Mode IN FILE is supported for SEQUENTIALIO. (See test

CE2102D.)

2-5

*w %,IN&

Mode OUTFILE is supported for SEQUENTIALIO. (See test
CE2102E.)

Modes OUT FILE and INOUT FILE are supported for DIRECTIO. (See S
tests CE2!O2F and CE2102J.)

Mode INFILE is supported for DIRECTIO. (See tcst CE2102.)

RESET and DELETE are supported for SEQUENTIALIO and DIRECTIO.
(See tests CE2102G and CE2102K.)

Dynamic creation and deletion of files are supported for
(SEQUENTIALIO and DIRECT_10. (See tests CE2106A and CE2106B.)

Overwriting to a sequential file truncates the file to last
element written. (See test CE2208B.)

An existing text file can be opened in OUT FILE mode, can be
created in OUTFILE mode, and can be created INFILE mode. (See
test EE3102C.)

By default, only one internal file can be associated with each S
external file for text I/O for both reading and writing. (See
tests CE211OB, CE2111D, CE3111A. .E (5 tests), CE3114B, and
CE3115A.)

More than one internal file can be associated with each external
file for sequential I/0 for reading only. (See test CE21O7A.)

More than one internal file can be associated with each external
file for direct I/0 for reading only. (See test CE2107F.)

Temporary sequential files are given names. Temporary direct
files are given names. Temporary files given names are not
deleted when they are closed. (See tests CE21O8A and CE2108C.)

- Generics.

Generic subprogram declarations and bodies can compiled in
separate compilations. (See tests CA1012A and CA2009F.) •

Generic package declarations and bodies can be compiled in
separate compilations. (See tests CA2009C, BC3204C, and
BC3205D.)

Generic unit bodies and their subunits can be compiled in
separate compilations. (See test CA3011A.)

2-6

D

D

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

At the time of testing, version 1.9 of the ACVC comprised 3122 tests of

which 25 had been withdrawn. Of the remaining tests, 89 were determined

to be inapplicable to this implementation.

The AVF concludes that the testing results demonstrate acceptable

conformity to the Ada Standard.

I
3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
A B C D E L

Passed 108 1048 1773 17 16 46 3008

Failed 0 0 0 0 0 0 0

Inapplicable 2 3 82 0 2 0 89

Withdrawn 3 2 19 0 1 0 25

TOTAL 113 1053 1874 17 19 46 3122

3-1

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL
2 3 4 5 6 7 8 9 10 111 14

Passed 185 553 657 245 166 98 141 326 137 36 234 3 227 3008

Failed 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Inapplicable 19 20 18 3 0 0 2 1 0 0 0 0 26 89

Withdrawn 2 13 2 0 0 1 2 0 0 0 2 1 2 25

TOTAL 206 586 677 248 166 99 145 327 137 36 236 4 255 3122

3.4 WITHDRAWN TESTS

The following 25 tests were withdrawn from ACVC Version 1.9 at the time
of this validation:

B28003A E28005C C34004A C35502P A35902C C35904A
C35AO3E C35AO3R C37213H C37213J C37215C C37215E
C37215G C37215H C38102C C41402A C45614C A74106C
C85018B C87B04B CC1311B BC3105A ADlAO1A CE2401H
CE3208A

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of
features that a compiler is not required by the Ada Standard to support.
Others may depend on the result 'of another test that is either
inapplicable or withdrawn. The applicability of a test to an
implementation is considered each time a validation is attempted. A
test that is inapplicable for one validation attempt is not necessarily
inapplicable for a subsequent attempt. For this validation attempt, 89
test were inapplicable for the reasons indicated:

C24113H..Y (18 tests) have source lines that exceed the VAX Ada
implementation limit of 120 characters.

3-2

A28004A Line 23 contains a pragma INTERFACE for function MEMORYSIZE
whose body is declared at line 18; this implementation rejects the
subprogram body on the basis of the Ada Standard 13.9 (3). The test
expects the pragma to be ignored due to the language name "ZZZZZZ". The
AVO temporarily Iruled this test N.A. while the issue is further
considered.

C355081..J (2 tests) and C35508M..N (2 tests) use enumeration
representation clauses for boolean types containing representational
values other than (FALSE -> 0, TRUE -> 1). These clauses are not
supported by this compiler.

C35702A (and B86001CP which is not included in the above 89 count) use
SHORTFLOAT which is not supported by this implementation.

A39005G specifies a range for a component in a record representation
clause that is not compatible with the default representation chosen by
the compiler for the type of the component.

The following (14) tests use LONGINTEGER, which is not supported by
this compiler.

C45231C C45304C C45502C C45503C C45504C C45504F
C45611C C45613C C45631C C45632C B52004D E55B09C
C55B07A B86001CS

The following (22) tests use particular fixed point base types which are
not supported by this compiler.

C35902D C35A03B..C C35A030..P C35A04B..C C35AO40..P
C35A06B C35A07B..C C35AO70..P C455311..J C45513M..P
C455321..J C45532M..P

C86001F redefines package SYSTEM, but TEXT 10 is made obsolete by
this new definition in this implementation and the test cannot be
executed since the package REPORT is dependent on the package TEXTIO.

C96005B requires the range of type DURATION to be different from those
of its base type; in this implementation they are the same.

CE2102E is inapplicable because this implementation supports mode
OUTFILE for SEQUENTIALIO. A

CE2102F is inapplicable because this implementation supports mode
INOUTFILE for DIRECTI0.

CE2102G is inapplicable because this implementation supports RESET for
SEQUENTIALIO.

CE2102J is inapplicable because this implementation supports mode
OUTFILE for DIRECT_10.

3-3

CE2102K is inapplicable because this implementation supports RESET for

DIRECT_!O.

CE2105A, CE2105B; CE2111H, and CE3109A are inapplicable because this
implementation does not allow the creation of a file of mode INFILE.

CE2107B..E (4 tests), CE2107G..I (3 tests), CE2110B, CE2111D, CE3111B..E
(4 tests), CE3114B, and CE3115A are inapplicable because this
implementation does not allow more than one internal file to be
associated with an external file for mode INOUT FILE or OUTFILE in
combination with mode INFILE or OUTFILE or INOUTFILE when default
options are used.

EE2401D and EE2401G use instantiations of package DIRECT_10 with
unconstrained array types and record types having discriminants without
defaults. These instantiations compiled with no errors, but during
execution USEERROR was raised.

3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS

It is expected that some tests will require modifications of code,
processing, or evaluation in order to compensate for legitimate
implementaLion behavior. Modifications are made with the approval of
the AVO, and are made in cases where legitimate implementation behavior
prevents the successful completion of an (otherwise) applicable test.
Examples of such modifications include; adding a length clause to alter
the default size of a collection; splitting a Class B test into
sub-tests so that all errors are detected; and confirming that messages
produced by an executable test demonstrate conforming behavior that
wasn't anticipated by the test (such as raising one exception instead of
another).

No modifications were required for any of the tests.

C34007A, C34007D, C34007G, C34007M, C34007P, and C34007S require that
the attribute STORAGESIZE return a value greater than 1 when applied to
an access subtype for which no STORAGE_SIZE length clause was provided.
This requirement is challenged and will be reviewed by the ARG. The AVF
verified that the failure of these tests was solely attributable to the

STORAGE SIZE check, and the AVO ruled that such results should be
counted as "PASSED".

C4A0l2B checks that 0.0 raised to a negative power raises CONSTRAINT_
ERROR; however, NUMERICERROR may also be raised, and that is what this
implementation does. The AVF confirmed this by an analysis of the
results, and the AVO ruled that such behavior counts as "PASSED".

3.7 ADDITIONAL TESTING INFORMATION

3.7.1 Prevalidation

3-4

- IN

Prior to validation, a set of test results for ACVC Version 1.9 produced

by VAX Ada was submitted to the AVF by the applicant for review.
Analysis of these results demonstrated that the compiler successfully
passed all applicable tests, and the compiler exhibited the expected
behav'or on all inapplicable tests.

3.7.2 Test Method

Testing of VAX Ada using ACVC Version 1.9 was conducted on-site by a
validation team-from the AVF. The configuration consisted of a VAX 8800
operating under VAX/VMS, Version 4.7 and the two target computers: VAX
8800 host operating under VAX/VMS, Version 4.7 and a VAXstation II under
MicroVMS, Version 4.7. The host and target computers were linked via
DECnet.

A magnetic tape containing all tests except for withdrawn tests was
taken on-site by the validation team for processing. Tests that make
use of implementation-specific values were customized before being
written to the magnetic tape. Tests requiring modifications during the
prevalidation testing were included in their modified form on the
magnetic tape. 'ihe contents of the magnetic tape were loaded directly
onto the host computer.

After the test files were loaded to disk, the full set of tests was
compiled and linked on the VAX 8800, and all executable tests were run
on the VAX 8800 and the VAXstation. Results were printed from the host
computer, with results being transferred to the host computer via
DECnet.

The compiler was tested using command scripts provided by Digital
Equipment Corporation and reviewed by the validation team. The compiler
was tested using all default (option/switch) settings except for the
following:

Option/Switch Effect

/NOCOPY SOURCE Controls whether the source being compiled is
copied into the compilation library for a
successful compilation.

/NODEBUG Controls the inclusion of debugging symbol
table information in the compiled object

module.

/ERRORLIMIT-1000 Controls the number of error level diagnostics

that are allowed within a single compilation 0
unit before the compilation is aborted. -

/LIST Controls whether a listing file is produced.
/LIST without a filename uses a default
filename of the form sourcename.LIS, where

3-5

X%

sourcename is the name of the source file
being compiled.

/NOSHOW Controls whether a portability summary is
included in the listing.

Tests were compiled, linked, and executed (as appropriate) using a
single host computer and two target computers. Test output, compilation
listings, and job logs were captured on magnetic tape and archived at
the AVF.

3.7.3 Test Site

The validation team arrived at Nashua, NH on 07 Dec 1987, and departed
after testing was completed on 09 Dec 1987.

3

3-6

APPENDIX A

CONFORMANCE STATEMENT

The following Declaration of Conformance is provided by DEC for VAX Ada.

Because the VAXELN targets produce different results than those of the
VMS targets for three ACVC tests (which require temporary files to have

names), the VAXELN & VMS operating environments were tested separately,
and the testing is thus documented in separate VSRs. However, the AVO
made no request for DEC to submit separate Declarations of Conformance.

0

0

t

A-

COFOMAC STATEMEN

Declaration of Ccnformanze

Compiler Implementer: Digital Equipment Corporation
Ada validation Facility: National Bureau of Standards
Ada Compiler Validation Capability Version: 1.9

Base Configuration:

Compiler: VAX Ada Version 1.5

Host Configuration:

VAX 8800 (under VAX/VMS, Version 4.7)

Target Configuration:

V: X 8800 (under VAX/VMS, Version 4.7)
V.A.Xstation II (under MicroVMS, Version 4.7)
MicroVAX II (under VAXELN Toolkit, Version 3.0

in combination with VAXELN Ada, Version 1.2)

Derived Compiler Registration:

Compiler: VAX Ada Version 1.5

Host Conicuration:

All members of the VAX family:
Mi croVAX I
VAXstation I
MicroVAX iI
VAXstation 7I
VAXstat ion 2000

(all under MicroVVYS, Version 4.7)

MicroVAX 3500
Mi c r oVAX 3600
VAXserver 3500
V_' Xserver 3600
VA.Xserver 3602
VAXstation 3200
VALXstation 3500

(all under VAX/VMS, Version 4.7A)

VAX -2.1/7 30
VAXil- 1/750
VAX-11/780
VAX-11 /782
VAX-I1/785

2

VAX 8200
VAX 8250
VAX 8300
VAX 8350
VAX 8500
VAX 8530
VAX 8550
VAX 8600
VAX 8650
VAX 8700
VAX 8800 (base configuration)

(all under VAX/VMS, Version 4.7)

Target Configuration:

Same as Host; and the following VAXELN configurations

MicroVAX I
MicroVAX II
rtVAX 1000
KA620 (rtVAX 1000 processor board)
MicroVAX 3500
MicroVAX 3600
VAX-I2/730
VAX-l!/750
VAX 8500
VAX 8530
VAX 8550
VAX 8700
VAX 8800

(all under VAXELN Toolkit, Version 3.0 in
combination with VAXELN Ada, Version 1.2)

All of the processors listed above, including MicroVAX, VAXstation,
and VAXserver systems, are members of the VAX family. The VAX
family includes multiple hardware/software implementations of the
same instruction set architecture. All processors of the V-X family
together with the VMS or MicroVMS operating system provide an
identical user mode instruction set execution environment and need
not be distinguished for purposes of validation. Similarlv, all VIX
family processors supported as VAXELN Toolkit targets provide an
identical user mode instruction set execution environment.

The identical VAX Ada compiler is used on all hosts, and the
compiler has no knowledge of the particular VAX model on which it is
being executed. Further, the compiler generates identical code for
all targets. Thus, the code cenerated on any VAX host can be
executed without modification on any of the VAX targets listed
above.

3

.. U . . -WS. . rr.. t, , -, .. , . - . . -

All of the configurations listed under the derived compiler
registration section above are equivalent to the base conficuracion.
That is, all applicable ACVC Version 1.9 tests could be correctly
compiled and executed on any of the configurations listed.

14 September 1987

William Jllef~er

Vice Presi ent, System Software Group

4..

.,(

,,S.

.\ .?.

p..-

.-.-

4.)

4 5 !

k

APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent
conventions as mentioned in chapter 13 of MIL-STD-1815A, and to certain
allowed restrictions on representation clauses. The implementation-
dependent characteristics of the VAX Ada, Version 1.5, are described in
the following sections which discuss topics in Appendix F of the Ada S
Language Reference Manual (ANSI/MIL-STD-1815A).. Implementation-
specific portions of the package STANDARD are also included in this
appendix.

package STANDARD is 0

type INTEGER is range -2147483648 .. 2147483647;
type SHORTINTEGER is range -32768 .. 32767

0
type FLOAT is digits 6 range;
type LONGFLOAT is digits 15;

type LONGLONGFLOAT is 33 digits; 'I"

type DURATION is delta 1.OE-4 range -131072.0 .. 131071.9999;

end STANDARD;

-.4

B-I

S. .

APPENDIX B

APPENDIX F CF THE ADA STANDARZ

The only allowed implementation dependencles corresoond to
irmlementation-denendent pragmas, to certai.n machine-devendent
conventions as mentioned in chanter 13 of ANSI /M!IL- SD-1 815 9 3,
and to certain allowed restrictions on representation classes. The
imnlernentati on-denendent characteristics are described in the
following sections which discuss topics one through eight as s-tated
in Appoendi X F of the Ada Language Reference manual
(ANSI/M4IL-STD-1815A) .Two other sections, package STANDARD and file
naming conventions, are also included in this appendix.

Portions ofr this section refer to the following attachments:

1. Attachment 1 - Implementation-Dependent Pragmas

2. Attachment 2 - VAX Ada Appendix F 0

(1) T.lement,-ati-cn-Deroenden t Pragmnas

See At:tach-ment 1.

(2) Imr-nlementaticn-De~endentl- Attributes

Name 11) e 0

P 'A ST ENTR7Y The v alue of t.his attribute is cf tvz*e

The value of this attribz:e is of- tv-ze
universal i-ece.

?'MA.:i:NE SIZE" The value of this attribute is of t-,re
universal-integer.

IYVISM

P'I N U 1 P E TE R The value of this a- trib-ut e is of type
P.

P' TYPE-- CA%SS The value of this attribute is of type
SYSTEM.TYPECLASS.

(3) Package SYSTE.M

See Attachment 2, Section F.3.

(4) Representation Clause Restrictions

See Attachment 2, Secti-on F.4.

(5) Conventions

See Attachment 2, Section F..5.

(6) Address Clauses

See Attachment 2, Section F.6.

(7) Unchecked Conversions

VAX Ada suppnorts the generic function UNCHECKED CONVERSbON
withthe ollowing restrictions on the clas- ftye

involved:

1. The actual subtype corresponding to the formal typne
TAIRGET must not be an unconstrained array -type.-

2. The actual subtv~e corespondi4ng to the formal type
TRG ET mut n: be an unconstrainedtve w:
d~scrirn-nants.

(S) lnpz-Outpuz Packages

SEQUE-N:L 10 Pack age

SEQUENTIAL IC can be instantiated with anv file
typ7 e, includina an unconstrained array typ-e or an-
un-constrained record type. However, inzut-ou~zput
for access tvzes is erroneous.

B-2

- - C :7---:I Z -.: - - -

VAX Ada provides fu,;l super' fcr SEUENT:AL :0,
with the following restr:t- .s and clarif cations:

1. VAX Ada surcorts modes IN . and CUT FILE for
sequential input-output. Howeve:, VAX Ada does
not allow the creation of a file of mode

2. More than one internal file can be associated
with the same external file. However, with
default FORM strings, this is only allowed when
all internal files have mode INFILE (multiple
readers). If one or more internal files have
mode OUTFILE (mixed readers and writers or
multiple writers), then sharing can only be
achieved using FORM strings.

3. VAX Ada supports deletion of an external file
which is associated with more than one internal
file. In this case, the external file becomes
immediately unavailable for any new
associations, but the current associations are
not affected; the external file is actually
deleted after the last association has been
broken.

4. VAX Ada allows resetting of shared files, but an
implementation restriction does not allow the
mode of a file to be changed from INFILE to
OUT FILE (an amplification of accessing
privileges while the external file is being
accessed).

DI?_CT_10 Package

type CNT is range 0 .. 2147483647;

TEXT i Package

tyzne CNT is rance 0 .. 2147423647;
s v e ZED is 1 ran e 1 2747423647;

LCW LEVEL IO

Low-level input-output is not provided.

B-3

(9) Package STANDARD

type INTEGER is range -21474S-168 21474S3647;
type SHORTINTEGER is rance -3276S 32767;
type SHORT SHORT INTEGER is range -128 127;

-type LONGINTEGER is not support:ed

type FLOAT is digits 6;
type LONG_FLOAT is digits 15;
type LONG_LONG "FLOAT is di gits 33;
-- type SHORTFLOAT is not supported

type DURATION is delta 1.05-4
range -131072.0 . . 131071.9999;

(10) File Names

File names follow the conventions and restrictions of the
target operating system.

B-4

W1

ip

Attachment 1

Predefined Language Pragmas

I This annex defines the pragmas LIST, PAGE, and OPTIMIZE, and
summarizes the definitions given elsewhere of the remaining language-
defined pragma.

The VAX Ada pragma TITLE is also defined in this annex.

Pragma Meaning

AST ENTRY Takes the simple name of a single
entry as 'the single argument; at
most one AST ENTRY pragma
is allowed for any given entry.
This pragma must be used in
combination with the AST ENTRY
attribute, and is only allowed after
the entry declaration and in the
same task type specification or
single task as the entry to which
it applies. This pragma specifies
that the given entry may be used to
handle a VAX/VMS asynchronous
system trap (AST) resulting from a
VAX/VMS system service call. The
pragma does not affect normal use
of the entry (see 9.12a).

Predefined Language Pragmas 1-1

i,- r~~w

2 CONTROLLED Takes the simple name of an access
type as the single argument. This
pragma is only allowed immedi- S
ately within the declarative part or
package specification that contains
the declaration of the access type:
the declaration must occur before
the pragma. This pragma is not
allowed for a derived type. This
pragma specifies that automatic
storage reclamation must not be
performed for objects designated
by values of the access type, except
upon leaving the innermost block
statement, subprogram body, or
task body that encloses the access
type declaration, or after leaving
the main program (see 4.8).

3 ELABORATE Takes one or more simple names
denoting library units as arguments.
This pragma is only allowed imme-
diately after the context clause of
a compilation unit (before the sub-
sequent library unit or secondary
unit). Each argument must be the
simple name of a library unit men-
tioned by the context clause. This
pragma specifies that the corre-
sponding library unit body must be S
elaborated before the given compi-
lation unit. If the given compilation
unit is a subunit, the library unit
body must be elaborated before the
body of the ancestor library unit of
the subunit (see 10.5).

EXPORTEXCEPTION Takes an internal name denoting an
exception, and optionally takes an
external designator (the name of a
VAX/VMS Linker global sYmbol), a
form (ADA or VMS), and a code (a
static integer expression that is in-
terpreted as a VAX condition code)

1-2 Predefined Language Pragmas

N'

S

as arguments. A code value must
be specified when the form is VMS
(the default if the form is not spec-
ified). This pragma is only allowed
at the place of a declarative item,
and must apply to an exception
declared by an earlier declarative
item of the same declarative part
or package specification: it is not
allowed for an exception declared
with a renaming declaration. This
pragma permits an Ada excep-
tion to be handled by programs
written in other VAX languages
(see 13.9a.3.2).

EXPORT FUNCTION Takes an internal name denoting a
function, and optionally takes an
external designator (the name of a
VAX/VMS Linker global symbol),
parameter types, and result type
as arguments. This pragma is only
allowed at the place of a declarative
item, and must apply to a function
declared by an earlier declarative
item of the same declarative part
or package specification. In the
case of a function declared as a
compilation unit, the pragma is
only allowed after the function dec-
laration and before any subsequent
compilation unit. This pragma is
not allowed for a function declared
with a renaming declaration, and
is not allowed for a generic func-
tion (it may be given for a generic
instantiation). This pragma permits
an Ada function to be called from
a program written in another VAX
language (see 13.9a.1.4).

EXPORTOBJECT Takes an internal name denoting
an object, and optionally takes an
external designator (the name of a
VAX/VMS Linker global symbol) ,

Iand size designator (a VAX/VMS

Predefinea Language Pragmas 1-3

i.I

Linker global symbol whose value
is the size in byves of the exported
objtt) as arguments. This pragma
is only allowed at the place of a
declarative item at the outermost
level of a library package speci-
fication or body, and must apply
to a variable declared by an ear-
lier declarative item of the same
package specification or body;
the variable must be of a type or
subtype that has a constant size
at compile time. This pragma is
not allowed for objects declared
with a renaming declaration, and
is not allowed in a generic unit.
This pragma permits an Ada ob-
ject to be referred to by a routine
written in another VAX language
(see 13.9a.2.2).

EXPORT_ PROCEDURE Takes an internal name denoting
a procedure, and optionally takes
an external designator (the name of
a VAX/VMS Linker global symbol)
and parameter types as arguments.
This pragma is only allowed at the
place of a declarative item, and
must apply to a procedure declared
by an earlier declarative item of the
same declarative part or package
specification. In the case of a pro-
cedure declared as a compilation
unit, the pragma is only allowed
after the procedure declaration and
before any subsequent compilation
unit. This pragma is not allowed
for a procedure declared with a
renaming declaration, and is not
allowed for a generic procedure (it
may be given for a generic instanti-
ation). This pragma permits an Ada
routine to be called from a program

1-4 Predefined Language Pragmas

LI

Si
"S

written in another VAX !anguage
(see 13 .9a.1.4).

EXPOi<T_VALUED_ PROCEDURE Takes an internal name denoting
a procedure, and optionally takes
an external designator (the name of
a VAXIVMS Linker global symbol)
and parameter types as arguments.
This pragma is only allowed at the
place of a declarative item, and
must apply to a procedure declared S
by an earlier declarative item of the
same declarative part or package
specification. In the case of a pro-
cedure declared as a compilation
unit, the pragma is only allowed
after the procedure declaration and
before any subsequent compilation
unit. The first (or only) parameter
of the procedure must be of mode
out. This pragma is not allowed
for a procedure declared with a
renaming declaration and is not
allowed for a generic procedure (it P
may be given for a generic instan-
tiation). This pragma permits an
Ada procedure to behave as a func-
tion that both returns a value and
causes side effects on its parame-
ters when it is called from a routine
written in another VAX language
(see 13.9a.1.4).

IMPORT EXCEPTION Takes an internal name denoting
an exception, and optionally takes
an external designator (the name
of a VAX/VMS Linker global sym-
bol), a form (ADA or VMS), and
a code (a static integer expres-
sion that is interpreted as a VAX
condition code) as arguments. A
code value is allowed only when
the form is VMS (the default if the
form is not specified). This pragma

Predefined Language Pragmas 1-5

.

V
,5.

S

- . , " -,K" O'¢ ., ¢ 'Z,7 ''V'i',' .' ., 7 2 ,' '2"'7,'.' ," ' * J" "-2 "" '.,r " '-2."".""" 2" J'2" '2 '-5.,--5., ,.

is only allowed at the place of a
declarative item, and must apply
to an exception declared by an
earlier declarative item of the same
declarative part or package spec-
ification; it is not allowed for an
exception declared with a renaming
declaration. This pragma permits a
non-Ada exception (most notably,
a VAX condition) to be handled by
an Ada rrogram (see 13.9a.3.1).

IMPORT-FUNCTION Takes an internal name denoting a
function, and optionally takes an
external designator (the name of a
VAX/VMS Linker global symbol),
parameter types, result type, and
mechanism as arguments. Pragma
INTERFACE must be used with this
pragma (see 13.9). This pragma
is only allowed at the place of a
declarative item, and must apply
to a function declared by an earlier
declarative item of the same declar-
ative part or package specification.
In the case of a function declared
as a compilation unit, the pragma is
only allowed after the function dec-
laration and before any subsequent
compilation unit. This pragma is al-
lowed ior a function declared with
a renaming declaration; it is not
allowed for a generic function or a
generic function instantiation. This
pragma permits a non-Ada rou-
tine to be used as an Ada function
(see 13.9a.1.1).

IMPORT_OBJECT Takes an internal name denoting
an object, and optionally takes an
external designator (the name of a
VAX/VMS Linker gtooal svrmbol)
and size (a V.XA;.MS Lirnker global
symbol whose value is the size in
bytes of the imported object) as
arguments. This pragma is only

1-6 Predefined Language Pragmas

allowed at the place of a declara-
tive item at the outermost level of
a library package specification or
body, and must apply to a variable
declared by an earlier declarative
item of the same package specifi-
cation or body; the variable must
be of a t.pe or subtype that has a
constant size at compile time. This
pragma is not allowed for objects
declared with a renaming declara-
tion, and is not allowed in a generic
unit. This pragma permits storage
declared in a non-Ada routine to
be referred to by an Ada program
(see 13.9a.2.1).

IMPORTPROCEDURE Takes an internal name denoting
a procedure, and optionally takes
an external designator (the name of
a VAX/VMS Linker global symbol)
parameter types, and mechanism
as arguments. Pragma INTERFACE
must be used with this pragma
(see 13.9). This pragma is only
allowed at the place of a declar-
ative item, and must apply to a
procedure declared by an earlier
declarative item ot the same declar-
ative part or package specification.
In the case of a procedure declared
as a compilation unit, the pragrna
is only allowed after the proce-
dure declaration and before any
subsequent compilation unit. This
pragma is allowed for a procedure
declared with a renaming declara-
tion; it is not allowed for a generic
procedure or a generic procedure
instantiation. This pragma permits
a non-Ada routine to be used as an
Ada procedure (see 13.9a.1.1).

IMPORT_ VALUED PROCEDURE Takes an internal name denoting a
procedure, and optionally takes an
external designator (the name of a

Predefined Language Pragmas 1-7

A-

'I
VAX/VMS Linker global symbol),
parameter types, and rnechar'ism
as arguments. Pragma INTERFACE
must be used with this pragma
(see 13.9). This pragma is only
allowed at the place of a declar-
ative item, and must apply to a
procedure declared by an earlier
declarative item of the same declar-
ative part or package specification.
In the case of a procedure declared
as a compilation unit, the pragma
is only allowed after the procedure
declaration and before any subse-
quent compilation unit. The first
(or only) parameter of the proce-
dure must be of mode out. This "2
pragma is allowed for a procedure
declared with a renaming declara-
tion; it is not allowed for a generic
procedure. This pragma permits
a non-Ada routine that returns a
value and causes side effects on its S
parameters to be used as an Ada
procedure (see 13.9a.1.1).

4 INLINE Takes one or more names as ar-
guments; each name is either the
name of a subprogram or the name
of a generic subprogram. This p
pragma is only allowed at the place
of a declarative item in a declarative
part or package specification, or af-
ter a library unit in a compilation,
but before any subsequent compi-
lation unit. This pragma specifies
that the subprogram bodies should %
be expanded inline at each call
whenever possible: in the case of
a generic subprogram, the pragma
applies to calls of its instantiations
(see 6.3.2). p

5 INTERFACE Takes a language name and a sub-
prograrrL name as arguments. This A

1-8 Predefined Language Pragmas

-j.
'-p

,p

pragma is allowed at the place of a
declarative item, and must apply in
this case to a subprogram declared 0
by an earlier declarative item of the
same declarative part or package
specification. This pragma is also
allowed for a library unit; in this
case the pragma must appear after
the subprogram declaration, and •
before any subsequent compila-
tion unit. This pragma specifies
the other language (and thereby
the calling conventions) and in-
forms the compiler that an object
module will be supplied for the
corresponding subprogram (see 0
13.9).

In VAX Ada, pragma INTERFACE
is required in combination with
pragmas IMPORT- FUNCTION, k

IMPORT PROCEDURE, and 0
IMPORT- VALUED_ PROCEDURE r%
(see 13.9a.1).

6 LIST Takes orie of the identifiers ON
or OFF as the single argument.
This pragma is allowed anywhere •
a pragrna is allowed. It specifies
that listing of the compilation is to
be continued or suspended until
a LIST pragma with the opposite
argument is given within the same
compilation. The pragma itself
is always listed if the compiler is
producing a listing.

LONGFLOAT Takes either D FLOAT or G_ -
FLOAT as the single argument.
The default is GFLOAT. This
pragma is only allowed at the start
of a compilation, before the first
compilation unit (if any) of the

Predefined Language Pragmas 1-g,

*Ip, am

compilation. It specifies the choice
of representation to be used for the
predefined type LONG-FLOAT S
in package STANDARD and for
floating point type declarations with
digits specified in the range 7.. 15
(see 3.5.7a).

MAINSTORAGE Takes one or two nonnegative
static simple expressions of some %J,
integer type as arguments. This
pragma is only allowed in the
outermost declarative part of a
library subprogram; at most one
such pragma is allowed in a library
subprogram. It has an effect only
when the subprogram to which it
applies is used as a main program.
This pragma causes a fixed-size
stack to be created for a main task
(the task associated with a main 0
program), and determines the
number of storage units (bytes) to
be allocated for the stack working
storage area or guard pages or
both. The value specified for either
or both the working storage area
and guard pages is rounded up
to an integral number of pages.
A value of zero for the working
storage area results in the use of
a default size; a value of zero for
the guard pages results in no guard
storage. A negative value for either
working storage or guard pages
causes the pragma to be ignored
(see 13.2b).

7 MEMORY.SIZE Takes a numeric literal as the
single argument. This pragma
is only allowed at the start of
a compilation, before the first
compilation unit (if any) of the

1-10 Precefined Language Pragmas I..

I]

compilation. The effect of this
pragma is to use the value of the

specified numeric literal for the
definition of the named number
MEMORYSIZE (see 13.7).

OPTIMIZE Takes one of the identifiers TIME
or SPACE as the single argument.

This pragma is only allowed within
a declarative part and it applies
to the block or body enclosing Y
the declarative part. It specifies
whether time or space is the pri-

mary optimization criterion.

In VAX Ada, this pragma is only
allowed immediately within a

declarative part of a body declara-
tion.

PACK Takes the simple name of a record
or array type as the single argu-
ment. The allowed positions for
this pragma, and the restrictions on
the named type, are governed by
the same rules as for a representa-
tion clause. The pragma specifies
that storage minimization should be
the main criterion when selecting
the representation of the given type
(see 13.1).

10 PAGE This pragma has no argument,
and is allowed anywhere a pragma
is allowed. It specifies that the
program text which follows the P
pragma should start on a new %
page (if the compiler is currently
producing a listing).

1 PRIORITY Takes a static expression of the pre-
defined integer subtype PRIORITY
as the single argument. This •
pragma is only allowed within
the specification of a task unit or

Predeflned Language Pragmas 1-11

.!

immediately -rthin the outermost
declarative part of a main program.
It specifies the priority of the task S
(or tasks of the task type) or the
priority of the main program (see
9.8).

PSECT_OBJECT Takes an internal name denoting
an object, and optionally takes an
external designator (the name of
a program section) and a size (a
VAXIVMS Linker global symbol
whose value is interpreted as
the size in bytes of the exported
/imported object) as arguments. --

This pragma is only allowed at the
place of a declarative item at the
outermost level of a library package
specification or body, and must
apply to a variable declared by an
earlier declarative item of the same
package specification or body;
the variable must be of a type or
subtype that has a constant size
at compile time. This pragma is
not allowed for an object declared
with a renaming declaration, and is
not allowed in a generic unit. This
pragma enables the shared use of
objects that are stored in overlaid
program sections (see 13.9a.2.3).

12 SHARED Takes the simple name of a vari-
able as the single argument. This
pragma is allowed only for a vari-
able declared by an object decla-
ration and whose type is a scalar
or access type; the variable decla-
ration and the pragma must both
occur (in this order) immediately
within the sarme declarative part or
package specification. This pragma
specifies that every read or update

1-12 Predeflned Language Pragmas

of the variable is a synchroniza-
tion point for that variable. An
implementation must restrict the

objects for which this pragma is
allowed to obiects for which each of
direct reading and direct updating
is implemented as an indivisible
operation (see 9.11).

VAX Ada does not support pragma
SHARED (see VOLATILE).

13 STORAGE-UNIT Takes a numeric literal as the
single argument. This pragma
is only allowed at the start of
a compilation, before the first
compilation unit (if any) of the
compilation. The effect of this
pragma is to use the value of the
specified numeric literal for the
definition of the named number
STORAGE.UNIT (see 13.7).

In VAX Ada, the only argument
allowed for this pragma is eight (8).

14 SUPPRESS Takes as arguments the identifier
of a check and optionally also S
the name of either an object, a
type or subtype, a subprogram, a
task unit, or a generic unit. This
pragma is only allowed either im-
mediately within a declarative part
or immediately within a package
specification. In the latter case, the
only allowed form is with a name
thai denotes an entity (or several
overloaded subprograms) declared
immediately within the package
specification. The permission to
omit the given check extends from
the place of the pragma to the end
of the declarative region associated

Predefined Language Pragmas 1-13

,,

S.

with the innermost enc!osing b!ock
statement or program unit. For A
pragma given in a package specifi-

cation, the permission extends to
the end of the scope of the named
entity.

If the pragma includes a name, the
permission to omit the given check
is further restricted: it is given only
for operations on the named object
or on all objects of the base type
of a named type or subtype; for
calls of a named subprogram; for
activations of tasks of the named
task type; or for instantiations of
the given generic unit (see 11.7).

VAX Ada does not support pragma
SUPPRESS (see SUPPRESS. ALL).

SUPPRESS.ALL This pragma has no argument
and is only allowed following a
compilation unit. This pragma
specifies-that all run-time checks in
the unit are suppressed (see 11.7).

is SYSTEMNAME Takes an enumeration literal as
the single argument. This pragma
is only allowed at the start of
a compilation, before the first
compilation unit (if any) of the
compilation. The effect of this
pragma is to use the enumeration
literal with the specified identifier
for the definition of the constant
SYSTEM-NAME. This pragma
is only allowed if the specified
identifier corresponds to one of the
literals of the type NAME declared
in the package SYSTEM (see 13.7).

1-14 Predefined Language Pragmas

bq

TASK.STORAGE Takes the simple name of a task
type and a static expression of
some integer type as arguments.
This pragma is allowed anywhere
that a task storage specification is
allowed; that is, the declaration of
the task type ia which the pragma
applies and the pragma must both
occur (in this order) immediately 0
within the same declarative part,
package specification, or task
specification. The effect of this
pragma is to use the value of
the expression as the number of
storage units (bytes) to be allocated
as guard storage. The value is
rounded up to an integral number
of pages: a value of zero results in
no guard storage; a negative value
causes the pragma to be ignored
(see 13.2a).

TIME_ SUCE Takes a static expression of
the predefined fixed point
type DURATION (in package
STANDARD) as the single argu-
ment. This pragma is only allowed
in the outermost declarative part
of a library subprogram, and at
most one such pragma is allowed
in a library subprogram. It has an
effect only when the subprogram to
which it applies is used as a main
program. This pragma specifies the _
nominal amount of elapsed time
permitted for the execution of a
task when other tasks of the same
priority are also eligible for exe-
cution. A positive, nonzero value
of the static expression enables
round-robin scheduling for all tasks
in the subprogram; a negative or
zero value disables it (see 9.8a).

Predefined Language Pragmas 1-15

0

* - 3

TITLE Takes a title or a subtite string, or
both, in either order, as arguments.
Pragma TITLE has the form:

pra ka TITLE (litl1ng-option
[,til1ng-option])

titlftg-optoft :
[TITLE -stering-literal

I (SUBTITLE -) string-literal

This pragma is allowed anvwhere a
pragma is allowed: the given strings
supersedes the default title and/or %
subtitle portions of a compilation
listing.

VOLATILE Takes the simple name of a vari-
able as the single argument. This
pragma is only allowed for a vari-
able declared by an object declara-

tion. The variable declaration and 0
the pragma must both occur (in this
order) immediately within the same
declarative part or package speci-
fication. The pragma must appear
before any occurrence of the name
of the variable other than in an ad-
dress clause or in one of the VAX
Ada pragmas IMPORT_OBJECT,
EXPORT_OBJECT, or PSECT_
OBJECT. The variable cannot be
declared by a renaming declaration.
The VOLATILE pragma specifies
that the variable may be modified
asynchronously. This pragma in-
structs the compiler to obtain the
value of a variable from memory
each time it is used (see 9.11).

1-16 Predefined Language Pragmas

I

,N.

S ,.W

I

Attachment 2

Implementation-Dependent
Characteristics

NOTE

This appendix is not part of the standard definition of the
Ada programming language.

This appendix summarizes the implementation-dependent characteris-
tics of VAX Ada by

* Listing the VAX Ada pragmas and attributes.
" Giving the specification of the package SYSTEM.
* Presenting the restrictions on representation clauses and unchecked

type conversions.
" Giving the conventions for names denoting implementation-

dependent romponents in record representation clauses.
= Giving the interpretation of expressions in address clauses.
* Presenting the implementation-dependent characteristics of the

input-output packages.
" Presenting other implementation-dependent characteristics.

Implementatlon-Dependent Characteristics 2-1

F.1 Implementation-Dependent Pragmas

VAX Ad& provides the following pragmas, which are defined elsewhere
in the text. In addition, VAX Ada restricts the predefined language
pragmas INLINE and INTERFACE, and provides alternatives to the
pragmas SHARED and SUPPRESS (VOLATILE and SUPPRESS.ALL).
See Annex B for a descriptive pragma summary,

" ASTENTRY (see 9.12a)
" EXPORT EXCEPTION (see 13.9a.3.2)
- EXPORT-FUNCTION (see 13.9a.1.4)
* EXPORi'_OBJECT (see 13.9a.2.2)
" EXPORT_ PROCEDURE (see 13.9a.1.4)
" EXPORT-_VALUED_ PROCED LJRE (see 13.9a.1.4) 0
" IMPORTEXCE'TION (see 13.9a.3.1)
" IMPORTFUNCTION (see 13.9a.1.1)
" IMPORTOBJECT (see 13.9a.2.1)
* IMPORT_ PROCEDURE (see 13.9a.1.1)
" IMPORT_ VALUED- PROCEDURE (see 13.9a.1.1) S
* LONG FLOAT (see 3.5.7a)

" MAIN_ STORAGE (see 13.2b)
" PSECTOBJECT (see 13.9a.2.3)
" SUPPRESSALL (see 11.7)
" TASKSTORAGE (see 13.2a)
" TIME SLICE (see 9.8a)
• TITLE (see B)
• VOLATILE (see 9.11) -

2

2-2 Implementatlon-ODependlent Chnaracteristics

A.

F.2 Implementation-Dependent Attributes

VAX Adca provides the following attributes, which are defined else-
where in the text. See Annex A for a descriptive attribute summary.

* AST-E.ENTRY (see 9.12a)
* BIT (see 13.7.2)
" MACI-iiNLSIZE (see 13.7.2) S
* NULLPARAMETER (see 13,9a.1.3)
" TYPE.CLASS (see 13.7a.2)

F.3 Specification of the Package System

package SYSTEM Is

type MANE i (VAI_VN, VAELI);

SYST MUANE coantant NAME
:- VAX~VNS;

STORAGE._IVHIT csetat :-8;
MENORT.SIZE coastant := 20031-1;AX INT Co stant :20031-1;

MIN.INT Constant :-0 31);
NAX-_DIGITS constant :-33;
MAX-MANTISSA coastnt :" 31;
FItIEDELTA censat : 2.O*(-31);
TIC& constant :-

1b17type PRIORITY is Is.'E E range 0 .. IS:

-- Address type

type ADDRESS is private;

ADDRLESSZERO : cnnSut ADDRESS:

function (LEFT ADDRESS; RIGHT INTEGER) return ADDRESS;
function ". (LEFT :ITEGER; RIGHT ADDRESS) return ADDRESS;
function - (LEFT ADDRESS; RIGHT ADDRESS) return INTEGER;
function - LEFT ADDRESS; RIGHT INTEGER) return ADDRESS;

-- function "." (LEFT, RIGHT ADDRESS) return BOOLEAN;
-unction / (LEFT, RIGHT ADDRESS) return B00LEM;
function "<* (LEFT. RIGHT ADDRESS) return BOOLEAN;
function "c-" (LEFT. RIGHT ADDRESS) return BOOLEAN;
function ") (LEFT. RICHT ADDRESS) return BOOLEAN;
function "'-" (LEFT, RIGHT ADDRESS) return BOOLEAN; 5

Implementation-Dependent Characteristics 2-3

MAP 'N 41.

NotNe that because ADDRESS Is & private type
-*the functions -. , and "/" are already available and

do not have to be explicitly defined

type TARGET is private;
fuactisa FETCH- .1 09-ADDRESS (A ADDRESS) rests.a TARGET;

gesert TP.
type TAGTis private:

procedure ASSIG10-..OOR~ESS lka AfDLKESS; I : TRE)

type TYPE-~CLASS Is (TYPE.CLASS-EUNXATION.
TYPE..CLASS-.INTEGER.
T7PE-CLASSFIXED -POINT,
TTPECLASS-.FLOAT ING-.PC INT.
TPE-.CLASS-.AUAY.

TYPE-..CLASS-.RECORD,
?TPE..CLASU..ACCESS.
TYPE..CLASS-TASK.
TPE..CLASS..ADDLESS);

-- VAX Ada floating point type declarations for the VAX
-- hardware floating point data types

type D-F.LOAT is imnplementation-.defined;
type ?..JLOAT Is implemenation..defined;
type C-JLOAT ini mplementation-. defined;
type I-LOAT to implementation-, defined;

AST handler type

type ASW{HANDLER Is liulted private:

NO..AS?...AHDLEA constant AST-HANDLER;:

N-lon-Ada exception

NON..ADA..ELROL :exception;

VAX hardware-oriented types and functions

type BIT-.ARRAY is array (INTEGER range <>) of BOOLEANl;
pragm PiCK (BZT.AUAY);

subtype fIT..AUAY.S Is BIT.A&RAT (0 7);
subtype BIT-.ARAY-1.6 is 317..AP.AT (0 16);
subtype BIT-ARRAT-32 is BIT-ARR.AT (0 31);
subtype BIT..ARRAT-4 Is BITAPJAY (0 63);

type UNSIGIM-SYTE is range 0 256;
for INSCHNED8TTE' SIZE use 8;

2-4 Implementation-Deoendent Characteristics

fametlea not* (LEF UNIOHDSYM return VISIGUED.UYTE
taele *and" (LEFT, RIGHT WNIGIND-YZI return UWBIOED..3YE;
tunetle 'or' (LEFT. RIGH? U1SIGNED-BYTE) return WISICNEC..BYTE
inattle 'xor* (LUFT, RIGHT1 UNSIND-OTTE) restra UNBICNED..3YE;

type UNSIGNED-3TE.ARAL? to array (INTEGER razle W) of UNSIGHD_8TTE;

type 11NSIG11E-VhRD is rale 0 .0a636
for UNSICN1E..W0RDSIZE see 10:0

fautes not* (LEFT U1SICHID-VW0RD) return UNSICIIED..WORD;
fuaction land* (LUFT. RIGHT UNSINED-VORD) rotor& UNSICKED..WCRD;
tunctlen *or* (LEFT. RIGHT UNSIC11E..10RD) return UHSICKED-VWCRD;
function r* (LEFT, RIGHT1 UIISIC1IED-..ORD) return WISICIIED..W0RD;

function ?0(flNSZ07JM-VORD CX 3ITARRAY..IE) return UNlSICNK..VCRD:
function T0.-BI?.-AR.Y-16 (I UflSIGNED-WORD) return BI?..ARRAI..10;

type 1INSICNED-.WORD..AM.AY Is array (INTEGER rage <)) of IrNSICHED-VORD;

type WISICKED..LONCVORD Is range MIN?T. MAINT:I?
for U1SIGN6D-LNCW0RD SIZE use 32;

function *not" (LEFT NSIUNE..LNGWCRfl) return UNSICHED-LONCWORD;

fuzetisa "azd' (LEFT. RIGHT U'NSICHFE..LOMOVR0) retire VIUSIGNED-LONGVORD,
function *or* (LEFT. RICH? U1SIGNE..LONGW0R0) rostra UNSIGlIED..L0NGVGRD;

fumeio* Ixorl (LEFT, RIGH? VNSIGNED-LNOW0RD) return UNlSICGIED..L0NGW0RD;

jnctlon ?0...V7SICNED..LCHCUOD U : BI?.ARAY-.32)
return VNSICNED..LONCORD:

function ?.-BI?.-ARLAT-32 U : UNSICKED-LOMOVRD) return BI?..ARAA?32;'

type UNSIGNED...LONGCRD-ARRAY Is
array (INTEGER ral*e <>) of 11NSIGNED-LONGWORD;

type UNSICHN..QUADVORD Is record
LO VNSIGNTE..LONGCILD; -

LI UNSICNED-LONCYORD:
end record;

for UNSIGNED-TJADVOLDSIZE use 64;

function 'not* (LEFT MSICGlE..QUADVOILD) return UNSIGNED..QUADVORfl:
function *and* (LEFT, RIGH? 13SICUEI..QUADVGRD) return UNSI0?7ED..QADVOAD;
function *or* (LEFT, RICH? U'NSIGNED..0UADVOILD) return UHSICIMD..QUADVORD;
function Ixorl (LEFT, RICH? UNSIGNEDQU&DVOILD) return UIISICUTEDQUADWQR3D;

function T0?JA 1S-D..IADVORD (I :BIARPAY-64)
return UNSIGITED-QUArWOR3 S

function 1C..SI?..ARAAI',4 (I UNS IVIED QUADVOILD) return BITARRAY.04;

Implerrernation-Decendent Characteristics 2-5 De

dv

type UUSICrtLDg1110V01.AAA Is
ara (INTEGER rsie <>) of UNSICNE0.QUADWORD;

functiont T-ADORESS (a INTEGER) return ADDR.ESS;
functiont TO-A0DRLSS (1! UNSIIEDLONWORD) rotor& ADDRESS;
tunctisa TO-ADDILESS (I universal-inieger) rotor& ADDR.ESS;

functs TO-.INTEGER (I ADDRESS) return, I2MTCER;
functin a-UENSIC1(E..LONCY0RD (I ADDRESS) return WEICHEDL0H0VI0RD;

-1teafD!C01MRf U1 ASCADLER) voters UWSICNEDLUC!%:".

-- Conventional nameas for static subtypes of type UNSICXED.LCNCWCP.D

subtype TflISICNED..1 is UNhSIND-LONC0RD rang. 0 2-a 1-1; .II
sobtype UNSIGNED.2 to UNSIGNED -LOCW0P.D ringe 0 2-o 1-1;
subtype UNSIGNED-3 Is U)ISICHED..LDNCWOR.D range 0 3.. 3-1;
subtype UflSIGNED-4 is tflSIGNED-i0NCW0RD range 0 2-c 4-1;
atyjp* UNSIGCNED-.. t i srSNED-LONHOOD range 0 2** 6-1:

subtype flfSIGNED.6 Is IUSICNED-LOCWORD range 0 2*- 6-1;

subtype UNSIGMED- Is ITNSICNED..LONGWORD range 0 2*- 7-1;
subtype 1flSICNED..S Is tIKSICNED.L0NCV0RD range 0 2-. 8-1;
subtype UNSICNE2..9 is UNS1CKED-LOUCWORD mag. 0 2cc 9-1;
subtype UNSICIMD-.10 to UNSIGNED-L0N0V0RLD range 0 2-c10-1;

subtype UNSI0?NED..1 is UNSICNDLICW0R.D ring. 0 2*eil-1;
subtype UIISIGIED-12 is UNSICNED..LOICWORD range 0 2e.12-1;
subtype UNSICNED.13 is t7NSI(.ai .-. .MTClD range 0 2..13-1;
subtype VNSIGNED-.14 to WNSIGNED..L0NGW0RD range 0 2**14-1;
subtype TRISIGNED-16 is m1NsrCHED-LONGCW0D range 0 2**15-1;

subtype UNSICNED-.16 to UNSIGNED-LONCWDRD rings 0 2-16S-1;

subtype UIISICNU-D17 Is 0)ESCGNED-LNWOD range 0 2-.17-1;
subtype UNSIDIED18 ts ISIGNED-.ONGWORD ringe 0 2-518-1:
subtype UNSIC!1ED-19 Is UNSIGNED-LONCVORD ringe 0 2-.19-1;
subtype UNSIGNEO..20 to I0JSXCNED..LDNW0RD range 0 2-e20-1;

subtype UNlSICITED21 Is U1NSIGIDLOGVORD rang. 0 2--21-1;
subtype UZISICNlED-22 Is UNSIG ID..L0I1CW0RD range 0 2*e22-1;
subtype UNfS0NEfl.23 Is U1SIGNED.LONCV0PD ringe 0 2--23-1; c
subtype UNlSICITED.24 In WNSICHED-LNGWORD ringe 0 2-*24-1;
subtype UIISICIED-26 Is IhISIGNE..LONGWORD range 0 2*e26-1;

subtype UflSICGlED-26 Is MISICI! .LONCYORD range 0 2.e2e-l:
subtype tflStIllED-27 is UNSICUED-.ONGWOR2 ring. 0 2*c37-1;
subtype UIISIGIED-.25 Is UNIS1O;2.0-NCW0Rfl range 0 2--28-1;
subtype tfllS:CuTED-29 Is 1flJSIMIED..LOCI ORD rings 0 2ce2g-1;
subtype UMrStCUED-3O is UNSIGZJED-LDNGVORD range 0 2--30-1;
subtype MUSIC1EZ..31 Is UNlSICUH...LOCCVR ring. 0 2--31-1;4.

-- Functi.on for obtainin~g giobal symbol-value.

function :-'(P:R:-7AL4E (SYNBOL iSTRINGC) return flISICN LAUCCD

-- VAX device and process register operations

2-6 Irroiementation-Depoendenr Charac~er'stics

Pe4

fuaction READ.REGISTER (SOURCE U)nSICNEDBTTE) reira tNSIcNiEBTTZ;
unctilon K.ADREGISTEA (SOURCE TVNSIG-NW _OLD) return UlSIGNED- ORD;
funlloa READEGISTZ1 (SOURCE UNISIGNED.LONaWOR1) retura VMISIGNED.LONGWORD;

procedure VIRTE..REOISTERPDRCE UNSIGNED-BYTE:
TARGET out UNSIGfED_BTTE).

procedure WRITE.&EGISTER S.nRCE :UNSI -2ED.WORD;
TARGET e% UNSIGNED.WORD);

procedure VRITE-REOISTEl(SOURCE :UNSIONE.LONGWORD;
TARCET *a% USIOGED-LONGVORD);

unctlon NFPR (REG.NUMBE INTEGER) rotorm USI nD_LNG0RD;
procedure MTPR (ILEG. UBE INTEGER;

SOURCE UNSIGNE.DLONGVORD);

VAI interlocked-inAtruction procedures

procedure CLEAR.INTELOC (BIT In out BOOLEAN;
OLD-VALUE out BOOLEAN); %

procedure SET-INTELOCKED (BIT in out BOOLEAN:
OLD-VALUE out BOOLEAN);

type ALIONEDSHORT.INTEGER is
record

VALUE : SHORTINTEGE :- 0;
end record;

for ALIGNED.SHORTINTEGER use
record

at wd 2;
end record;

procedure LDD.INTEI.LOCE (ADDEI!D in SHORTINTECE;,
AUG N: in out ALIGNE/_SHORTINTEGE;
SIGN : out ItTEGER);

type INSQSTATUS is (OK.IOTF.IRST, FAILNOLOC. OKFIRST);
type RE/.Q_STATUS Is (OK-jOTEPTT. FAILNOLOCX,

OK_EMTT, FAILWAS-EMPTT);

procedure INSONI (ITEM In ADDRESS;
HEADER in ADDRESS;
STATUS out IfSOSTATUS),

procedure RENHI (HEADER in ADDRESS;
ITEM out ADDRESS; %
STATUS out R0D4_STATUS);

.5

procedure INSOTI (ITEM In ADDRESS;
HEADCE in ADDRESS; %.
STATUS out IHSOSTATUS); .%

procedure RLMQTI (HEADE in ADDRESS:

ITL4 out ADDRESS;
STATUS out RENQSTATUS)"

Imolementation-Dependent Characteristics 2-7

r

oN
.5.
'.5

'0k

private

-- N t shown

end STSTEM;

F.4 Restrictions on Representation Clauses

The representation clauses allowed in VAX Ada are length. enumera-
tion, record representation, and address clauses.

In VAX Ada, a representation clause for a generic formal type or a
type that depends on a Lneric formal type is not allowed. In addition,
a representation clause for a composite type that has a component
or subcomponent of a generic iormal type or a type derived from a
generic formal type is not allowed.

F.5 Conventions for Implementation-Generated Names
Denoting Implementation-Dependent Components In
Record Representation Clauses

VAX Ada does not allocate implementation-dependent components in
records.

F.6 Interpretation of Expressions Appearing in Address
Clauses

Expressions appearing in address clauses must be of the type
ADDRESS defined in the package SYSTEM (see 13.7a.1 and F.3).
In VAX Ada, values of type SYSTEM.ADDRESS are interpreted as
integers in the range 0..MAXINT, and they refer to addresses in the
user half of the VAX address space,

VAX Ada allows address clauses for variables (see 13.5). Y

VAX Ada does not support interrupts.

2-8 Implementation-Derendent Charactenstics

%'-

%".

Si ~<-f.V~i.-V %<,-VV\V S AS .~ ~ . .. h%

F.7 Restrictions on Unchecked Type Conversions

VAX Ada supports the generic function UNCHECKEDCONVERSION
with the restrictions given in section 13.10.2.

F.8 Implementation-Dependent Characteristics of
Input-Output Packages

The VAX Ada predefined packages and their operations are imple-
mented using VAX Record Management Services (RMS) file orga- ft

nizations and facilities. To give users the maximum benefit of the
underlying VAX RMS input-output facilities, VAX Ada provides pack-
ages in addition to the packages SEQUENTIAL-IO, DIRECTLIO,
TEXT_10, and 10_EXCEPTIONS, and VAX Ada accepts VAX RMS File
Definition Language (FDL) statements in form strings. The following
sections summarize the implementation-dependent characteristics of
the VAX Ada input-output packages. The VAX Ada Run-Time Reference
Manual discusses these characteristics in more detail.

F.8.1 Additional VAX Ada Input-Output Packages

In addition to the language-defined input-output packages (SEQUENTI AL_
10, DIRECT_10, and TEXTIO), VAX Ada provides the following
input-output packages:

" RELATIVE_I0 (see 14.2a.3)
" INDEXED_IO (see 14.2a.5)
" SEQUENTIALMIXED-JO (see 14.2b.4)
" DIRECTMIXEDIO (see 14.2b.6)
" RELATIVE- MIXED- 10 (see 14.2b.8) •
" INDEXED MIXED 1O (see 14.2b.10)

VAX Ada does not provide the package LOWLEVELIO.

Implementation-0elendent Charac'eristics 2-9

%f

I W ,' 0' IL

F.8.2 Auxiliary Input-Output Exceptions

VAX Aca defines the exceptions needed by the packages RELATIVE_
10, INDEXEDIO, RELATIVE MIXED- 10, and IND'EED_ MIXED.O
in the package AUX,[O_ EXCEPTIONS (see 14.5a).

F.8.3 Interpretation of the FORM Parameter

The value of the FORM parameter for the OPEN and CREATE proce-
dures of each input-output package may be a string whose value is in-
terpreted as a sequence of statements of the VAX Record Management
Services (RMS) File Definition Language (FDL), or it may be a string
whose value is interpreted as the name of an external fife containing
FDL statements.

The use of the FORM parameter is described for each input-output
package in chapter 14. For information on the default FORM param.
eters for each VAX Ada input-output package and for information on
using the FORM parameter to specify external file attributes, see the
VAX Ada Run-Time Reference Manual. For information on FDL, see the
Guide to VAX/VMS File Applications and the VAX/VMS File Definition
Language Facility Reference Manual.

F.8.4 Implementation-Dependent Input-Output Error Conditions

As specified in section 14.4, VAX Ada raises the following language-
defined exceptions for error conditions occurring during input-output
operations: STATUS-ERROR, MODE-ERROR, NAME-ERROR, USE-
ERROR, END-ERROR, DATA-ERROR, and LAYOUT_ERROR. In
addition, VAX Ada raises the following exceptions for relative and
indexed input-output operations: LOCKEiROR, EXISTENCE ERROR,
and KEY-ERROR. VAX Ada does not raise the language-defined
exception DEVICE-ERROR; device-related error conditions cause USE-
ERROR to be raised.

The exception USE-ERROR is raised under the following conditions:

" In all CREATE operations if the mode specified is IN-FILE.

* In all CREATE operations if the file attributes specified by the
FORM parameter are not supported by the package.

2-10 Implementation-Dependent Characteristics

~~~~% !A 9.i -j~9-"P> .-.



* In the WRITE operations on relative or indexed files if the element
in the position indicated has already been written.

- In the UPDATE and DELETE-ELEMENT operations on relative or 0
indexed files if the element to be updated or deleted is not locked.

* In the UPDATE operations on indexed files if the specified key
violates the external file attributes.

* In the SETLINELENGTH and SETPAGE_ LENGTH opera-
tions on text files if the lengths specified are inappropriate for the
external file. 0

* If the capacity of the external file has been exceeded.

The exception NAME-ERROR is raised as specified in section 14.4:
by a call of a CREATE or OPEN procedure if the string given for the
NAME parameter does not allow the identification of an external file. In
VAX Ada, the value of a NAME parameter can be a string that de,-,otes
a VAX/VMS file specification or a VAX/VMS logical name (in either
case, the string names an external file). For a CREATE procedure, the
value of a NAME parameter can also be a null string, in which case it
names a temporary external file that is deleted when the main program
exits. The VAX Ada Run-Time Reference Manual explains the naming of
externai fii.., in more detail.

F.9 Other Implementation Characteristics

Implementation characteristics having to do with the definition of a
main program, various numeric ranges, and implementation limits are
summarized in the following sections. -

F.9.1 Definition of a Main Program

A library unit can be used as a main program provided it has no
formal parameters and, in the case of a function, if its returned value
is a discrete type. If the main program is a procedure, the status
returned to the VAX/VMS environment upon normal completion of the
procedure is the value one. If the main procedure is a function, the
status returned is the function value. Note that when a main function
returns a discrete value whose size is less than 32 bits, the value is zero
or sign extended as appropriate.

.%,

Implementation-Dependent Charac'erstics 2-11 -,

sA

0 l



Y.K JR

F.9.2 Values of Integer Attributes

The ranges of values for integer types declared in the package 6
STANDARD are as follows:

SHORT.SHORT_ NTEGER -128. 127

SHORTINTEGER -32768 .32767

INTEGER -2147483t-48 .2147483647

For the packages DIRECT...IC, RELATIVEIO, SEQUENTIAL_. MIXED_.
10, DIRECT_. MIXED-. 1O, RELATIVE_. MIXED_. 10, INDEXEDMIXED.,
10, and TEXT-10, the ranges of values for types COUNT and
POSITIVE-,COUNT are as follows:

COUNT 0 2147483647

POSITIVE..COUNT 1. 2147483647

For the package TEXT-.10, the range of values for m~e type FIELD is as
follows:

FIELD 0 .. 2147483647

F.9.3 Values of Floating Point Attributes

F..Floating Value
and Approximate

Attribute Decimal Equivalent

DIGITS 6

MANTISSA 21

EMAX 84

EPSILON 16#0.1000000#e-4
approximately 9.53674E-07

SMALL 16#0.8000..00#e- 2l
approximately 2.58494E-26

LARGE 16#0. FFFFF80e + 21
approximately 1,9342SE -2-9

2-12 Implementation.Decendent Gharaceristics



F..Floatlng Value

and Approximate

Attribute Decimal Equivalent

SAFE-EMAX 127

SAFE..SMALL 1600.100000O#e-31
approximately 2.93874E-39 *I

SAFE..LARGE 16#0.7FFF-FCO~e+32A
approximately 1. 70141 E + 38

FIRST -16E0,7FFF-FFB~e+32

approximately -1 .70141E +38

LAST 16#0.7FFF-FF8#e+32
approximately 1. 70141 E +38

MACHINE_.RADIX 2

MACHINE. -MANTISSA 24

MACHINE.,EMAX 127

MACHINE_.EMIN -127

MACH1NE_.ROCNDS True

MACHINE_ OVERFLOWS True

D-.Floating Value
and Approximate

Attribute Decimal Equivalent

DIGITS 9

MANTISSA 31

EMAX12

EPSILON 16#0.4000-0000-0000-000O#e-7
approximately 9.313225746154BE-1O

SMALL 16#O.8000.0000.OOOO..OO#e-31
approximately 2.3509887016446E -38

LARGE 1640. FFFFFFFE_ OOOO00#e +31
approximately 2. 1267647922655 E +37

SAFE EMAX 12

SAFE-5SMALL 16*0 1000 -((0-0 01100000#e-31

,,rproximtei~v -',9387358770557E-39

Implementation-Dependent Ch'aracteristicS 2-13

'k



DFloatinS Value
and Approximate

Attribute Decimal Equivalent 0

SAFE-LARGE 6#O,.7FFF. FFFF.WX). 0(X#t 32I

approximately 1.7014118338124E + 38

FIRST -1600.7FFFFFFF._FFFF-FF8#e+32
approximately -1.7014118346047E + 38

LAST 16#0.7FFF. FFFF. FFFF. FF8#e + 32

approximately 1.7014118346047E .38

MACHINE. RADIX 2

MACHINE. MANTISSA 56

MACHINE_ EMAX 127

MACHINE.EMIN -127

MACHINE.ROUNDS True

MACHINE.OVERFLOWS True

G.Floating Value
and Approximate

Attribute Decimal Equivalent

DIGITS 15

MANTISSA 51

EMAX 204

EPSILON 16#0.40000000_.n00O#e-12

approximately 8.881784197001E-016

SMALL 16#0.8000..0000.00_ 00#e-51
approxaiately 1.944692274332E-062

LARGE 16#0. FFFF_ FFFF. FFFF_ EO#e +51
approximately 2,371100870814E + 061

SAFEEMAX 1023

SAFE. SMALL 1600.1000. 0000_ 000000#e- 255
approximately 5 .562684646268E-309

SAFE.LARCE 16#0.7FFF_ FFFF- FFFF FOte + 256

approximately 8.988465674312E .307

0

2-14 Imolementation-Decendent Characteristics .

0

'%J



GFloating Value
and Approximate

Attribute Decimal Equivalent 6

FIRST -1600.7FFF FFFF FFFF FC~e - 2.56
approximately -8.988465674312E + 307

LAST 16#0.7FFFFFFF-FFFF.FC#e+256
approximately 8. 988465674312E .307

MACHINE.RADIX 2

MACHINE. MANTISSA 53

MACHINE-.EMAX 1023

MACHINE. EMIN -1023

MACHINE. ROUNDS True

MACHINE. OVERFLOWS True 0

H.Floating Value
and Approximate

Attribute Decimal Equivalent

DIGITS 33

MANTISSA 1.

EMAX 444

EPSILON 16#0.4000_0000-0000.0000.0000-0000_0000.0#e- 27

approximately 7.7037197775489434122239117703397E-0034

SMALL 16#0.8000000.. 0000.0000..0000. .0000. 0. O#e-Il 1
approximately 1. 1006568214637918210934318020936E -0134

LARGE 16#0. FFFF. FFFF. FFFF FFFF. FFFF. FFFF. FFFE.0*e - II1
approximately 5- 2'42026847543Oo59332737993000E ,0133

SAFE.EMAX 16383

SAFE.SMALL 16#0.1000.0000_ 0000.0000.0000.0000_ 0000_ 0#e-4093

approximately 8.4052578577802337636566945433044 E-4933

SAFE.LARGE 16#0.7FFF FFFFFFFF FFFF FFFF FFFF FFFF0-e- 4096

approximately 5.9486574767861588254287966331400E - 4931 4.,

FIRST -16*0.7FFF.FFFF FFFF FFFF-FFFF FFFF FFFF C-e- 4096

approximately -5 9486574767861588254287966331400E 4931 .

Imp ementation-Dependent Charac!eristics 2-15

~N



H Floating Value
and Approximate

Attribute Decimal Equivalent

LAST 1600.7FFF FFFF FFFF FFFF FFFF FFFF_ FFFF Cee -40%
approximately 5.9486574767861588254287966331400E + 4931

MACHINE.RADIX 2

MACHINE.MANTISSA 113

MACHINE.EMAX 16383

MACHINEEMIN -16383 4

MACHINE.ROUNDS True

MACHINE_ OVERFLOWS True

F.9.4 Attributes of Type DURATION

The values of the significant attributes of type DURATION are as
follows:

DURATION' DELTA 1.00000E-04

DURATION' SMALL 2-14

DURATION' FIRST -131072.0000

DUATION' LAST 131071.9999

DURATION ' LARGE 1.3107199993896484375E -05

F.9.5 Implementation Limits

Limit Description

32 Maximum number of formal parameters in a subprogram or entry P

declaration that are of an unconstrained record type

120 Maximum identifier length (number of characters)

120 Maximum number of characters in a source line

245 Maximum number of discriminants for a record type

2-16 lmolementation-Deoendjent Characteristics

a.K

p

•- .'I.'



V

Limit Description

246 Maximum number of formal parameters in an entry or %ubprogrnm

dec!aration

255 Maximum number of dimensions in an array t.pe

1023 Maximum number of library units and .,ubunits in a compilation

closurel

4095 Maximum number of library units and :ubunits in an execution

closure
2

32757 Maximum number of objects declared with PSECT_OBJECT pragmas

65535 Maximum number of enumeration literals !n an enumeration type ,4

definition

65535 Maximum number of characters ;n a value of the predefined type -

STRING

65535 Maximum number of frames that an exception can propagate

65535 Maximum number of lines in a source file

231 -1 Maximum number of bits in any object

1The compilation closure of a given unit is the total set of units that the given unit
depends on, directly and indirectly.

2 The execution closure of a given unit is the compilation closure plus all associated %.
secondary units (library bodies and subunits).

.'.-

lmplementation-Oeoencdent Characterlsrics 2-1 7..

I

5 5 ~.I'~kb 5'5~9 ~ j~ S'i . \.. P%



APPENDIX C 0

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values, S
such as the maximum length of an input line and invalid file names. A
test that makes use of such values is identified by the extension .TST

in its file name. Actual values to be substituted are represented by -

names that begin with a dollar sign. A value must be substituted for

each of these names before the test is run. The values used for
this validation are given below.

Name and Meaning Value

$BIGIDI 119 A's and a '1' 5
Identifier the size of the
maximum input line length with
varying last character.

$BIG_ID2 119 A's and a '2'

Identifier the size of the S
maximum input line length with
varying last character.

$BIGID3 119 A's and a '3' in the middle
Identifier the size of the
maximum input line length with
varying middle character.

$BIGID4 119 A's and a '4' in the middle
Identifier the size of the
maximum input line length with
varying middle character. S

$BIGINTLIT 116 O's and 0298
An integer literal of value 298
with enough leading zeroes so

that it is the size of the
maximum line length.

$BIGREALLIT 115 O's and 690.0
A universal real literal of
value 690.0 with enough leading
zeroes to be the size of the
maximum line length. S

C-1

%"

."- "" ' ' " --- . ".



$BIG_STRING1 "60 A's"

A string literal which when

catenated with BIG STRING2
yields the 'image of BIGIDI.

$BIG_STRING2 "59 A's followed by 1"

A string literal which when
catenated to the end of
BIGSTRING1 yields the image of D
BIGIDl.

$BLANKS 100 blanks
A sequence of blanks twenty
characters less than the size
of the maximum line length.

$COUNTLAST 2147483647
A universal integer literal
whose value is
TEXTIO.COUNT'LAST.

$FIELDLAST 2147483647
A universal integer
literal whose value is
TEXTIO.FIELD'LAST.

$FILENAMEWITHBADCHARS BAD-CHARS^#.%!X
An external file name that

either contains invalid

characters or is too long.

$FILE NAME WITH WILD CARD CHAR WiLD-CHAR*.NAM
An external f7ile name that
either contains a wild card
character or is too long.

$GREATER THANDURATION 75000.0-N
A i-, sal real literal that

lies between DURATION'BASE'LAST
and DURATION'LAST or any value

in the range of DURATION.

$GREATER THANDURATION BASE LAST 131073.0 $

A universal real literal that is
greater than DURATION'BASE'LAST.

$ILLEGALEXTERNALFILENAMEl BAD-CHAR @.'!
An external file name which

contains invalid characters.

C-2



-. .

$ILLEGALEXTERNALFILENAME2 THIS-FILE-WOULD-BE-PERFECTLY-

An external file name which LEGAL-IF-IT-WERE-NOT-SO-
is too long. LONG.SO-THERE

$INTEGERFIRST -2147483648

A universal integer literal
whose value is INTEGER'FIRST.

$INTEGERLAST 2147483647
A universal integer literal
whose value is INTEGER'LAST.

$1NTEGERLASTPLUS1 2147483648
A universal integer literal
whose value is INTEGER'LAST + 1. 0

$LESSTHANDURATION -75000.0
A universal real literal that
lies between DURATION'BASE'FIRST
and DURATION'FIRST or any value
in the range of DURATION.

$LESSTHAN DURATION BASE FIRST -131073.0
A universal real literal that is l
less than DURATION'BASE'FIRST. %

$MAXDIGITS 33
Maximum digits supported for
float4ing-point types.

$MAX IN LEN 120
Maximum input line length
permitted by the implementation.

$MAXINT 2147483647
A universal integer literal
whose value is SYSTEM.MAXINT.

$MAXINTPLUS_1 2147483648
A universal integer literal
whose value is SYSTEM.MAXINT+l.

$MAXLENINT BASED LITERAL 2: followed by 115 O's followed

A universal integer based by 11:
literal whose value is 2#11#
with enough leading zeroes in
the mantissa to be MAX IN LEN V
long.

C-3



$MAX_LEN_REALBASEDLITERAL 16 : followed by 113 O' s followed ,

A universal real based literal by F.E" :
whose value is 16:F.E: with
enough leading zeroes in the .
mantissa to be MAX IN LEN long.

$MAX,_STRINGILITERAL "118 A' s" 2
A string literal of size
MAX -IN -LEN, including the quote
characters.o

$MININT -2147483648 '
A universal integer literal t'

whose value is SYSTEM.MIN_ INT..

$NAME SHORT SHORT INTEGER .
A name of a predefined numeric- -

type other than FLOAT, INTEGER,
SHORT -FLOAT, SHORT INTEGER,
LONG-FLOAT, or LONG-INTEGER. :

$NEG BASED INT 16#FFFFFFFE# ,
A based integer literal whose

highest order nonzero bit
falls in the sign bit
position of the representation '

for SYSTEM.MAX INT. 0

I,,

C,

4Za.4

%*0



.,

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform tc
the Ada Standard. The following 25 tests had been withdrawn at the time -

of validation testing for the reasons indicated. A reference of the
form "Al-ddddd" is to an Ada Commentary.

B28003A A basic delcaration (line 36) wrongly follows a later
declaration. S

E28005C This test requires that 'PRAGMA LIST (ON);' not appear in a
listing that has been suspended by a previous "pragma LIST k
(OFF);"; the Ada Standard is not clear on this point, and the
matter will be reviewed by the ALMP. '

C34004A The expression in line 168 wrongly yield a value outside of the
range of the target type T, raising CONSTRAINTERROR.

C35502P The equality operators in lines 62 and 69 should be inequality
operators

A35902C Line 17's assignment of the nomimal upper bound of a fixed-
point type to an object of that type raises CONSTRAINT ERROR,
for that value lies outside of the actual range of the type.

C35904A The elaboration of the fixed-point subtype on line 28 wrongly
raises CONSTRAINTERROR, because its upper bound exceeds that of
the type. A

C35A03E & R These tests assume that attribute 'MANTISSA returns 0 when
applied tu a fixed-point type with a null range, but the
Ada Standard does not support this assumption.

C37213H The subtype declaration of SCONS in line 100 is wrongly expected
to raise an exception when elaborated.

C37213J The aggregate in line 451 wrongly raises CONSTRAINT ERROR.

C37215C,E, Various discriminant constraints are wrongly expected to be •
G,H incompatible with the type CONS.

C38102C The fixed-point conversion on line 23 wrongly raises
CONSTRAINT ERROR.

D-1

% %



lob

r C41402A 'STORAGESIZE is wrongly applied to an object of an access type.

C45614C REPORT.IDENT INT has an argument of the wrong type

(LONGINTEGER).

A74106C A bound specified in a fixed-point subtype declaration lies

C8501B outside of that calculated for the base type, raising

C87B04B CONSTRAINT ERROR. Errors of this sort occur re lines 37 &
CC1311B 59, 142 & 143, 16 & 48, and 252 & 253 of the four tests,

respectively (and possibly elsewhere) 1

BC3105A Lines 159..168 are wrongly expected to be incorrect; they are 41

correct.

ADIAOlA The declaration of subtype INT3 raises CONSTRAINTERROR for 4
implementations that select INT'SIZE to be 16 or greater.

CE2401H The record aggregates in lines 105 and 117 contain the wrong
values.

CE3208A This test expects that an attempt to open tha default output

file (after it was closed) with MODE IN file raises NAMEERROR
or USE ERROR; by commentary AI-00048, MODE ERROR should be
raised.

D-

%,

,N

5%

t| ' °i - -II " : - - - ' - . . .... .



0

'S,

ID S..,

•5
0

II, • . "-


